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In this paper, the free transverse vibrations of a system of two rectangular simply
supported thin plates connected by a homogeneous Winkler elastic layer are investigated
analytically. The small vibrations of the system are described by a set of two partial
di!erential equations, based on the Kirchho!}Love plate theory. Next, the homogeneous
equations of motion are solved by using the classical Navier method. The natural
frequencies of the system in the form of two in"nite sequences are determined and the
corresponding mode shapes of vibration are shown. As a consequence, an elastically
connected double-plate complex system executes two kinds of the free vibrations:
synchronous and asynchronous. The initial-value problem is then considered to "nd the
"nal form of the free vibrations. The theoretical analysis presented is illustrated by
a numerical example, in which the free vibrations of a system of two identical plates are
discussed in detail.
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1. INTRODUCTION

Plate-type structures are of great importance in many "elds of civil and mechanical
engineering. The present paper deals with a complex system of two rectangular plates which
are connected by a homogeneous Winkler elastic layer. This complex continuous system
can be used as a model for a three-layered structure consisting of three plates, in which the
middle light layer is represented by means of a Winkler-type foundation. The vibration
analysis of such a system is possible and not mathematically complicated for certain
particular cases of the boundary conditions; therefore it can be carried out by using the
same procedures as those used for a single plate. In the plate vibration theory based on the
classical Kirchho!}Love assumptions, two basic analytical methods are applied for
determining the free vibrations of a single thin rectangular plate [1}7]. These are the LeH vy
and Navier methods. As is well known, the LeH vy method [1}9, 11, 13}19] is used for a plate
having two opposite parallel edges simply supported and arbitrary boundary conditions on
the other two edges. The Navier method [1}7, 10, 12, 15, 16, 18, 19], being a particular case
of the LeH vy method, is appropriated for analyzing a plate with all four edges simply
supported. In this work, the Navier procedure is applied for formulating the complete exact
theoretical solutions for the free transverse vibrations of a simply supported rectangular
double-plate system.

The vibration problems of an elastically connected double-plate complex system have
been a subject of a number of papers. The "rst signi"cant work, by Kunukkasseril and
Radhakrishnan [20], was devoted to the free vibrations of a rectangular multi-plate system.
0022-460X/00/390595#14 $35.00/0 ( 2000 Academic Press
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The simple case of two identical plates was worked out in detail. The explicit forms of the
frequency equations and mode shapes of vibration were determined for "ve combinations of
the basic LeH vy-type boundary conditions. The general free and forced vibration theory
formulated for two di!erent rectangular plates elastically joined has been developed by the
author in his early papers [21}23]. Applying the Green's function method, Kukla [24}29]
has considered the free vibrations of two elastically connected plates assuming three
di!erent models of an elastic layer as: (1) a system of discrete translational elastic elements
[24, 29], (2) a system of line distributed translational elastic elements [25, 27, 29], and (3)
a non-homogeneous continuous elastic layer [26, 28, 29]. The forced vibrations of
a rectangular double-plate system subjected to a moving line load has been investigated by
Chonan [30, 31]. A similar problem of the response of two plates under a moving
concentrated force has been examined by SzczesH niak [32, 33]. References [7, 34, 35],
devoted to applying a double-plate system as a continuous dynamic vibration absorber
(CDVA), are especially interesting because of the great practical importance of these
devices. Certain dynamical problems of the rectangular plate systems have been also treated
in, for example, references [36}41].

The transverse vibrations of elastically connected circular multi-plate and double-plate
complex systems have been studied by many authors, including, among others,
Kunukkasseril and Swamidas [42}46], Kunukkasseril and Venkatesan [47, 48], Chonan
[49, 50], Moghilevskiy [51], and Oniszczuk [52, 53].

It is relevant to note that the vibration analysis of double-membrane systems presented
by the author in his papers [54}61] can be helpful in the investigations of analogous
systems of simply supported plates.

In this publication the free vibration analysis is limited only to the system of two plates
having all edges simply supported. The vibrations of a more general plate system with the
boundary conditions of the LeH vy type will be discussed by the author in later papers.

2. FORMULATION OF THE PROBLEM

The physical model of the vibrating system is composed of two parallel rectangular plates
connected by a Winkler elastic layer (see Figure 1). It is assumed that the plates are thin,
homogeneous and isotropic, and that they have constant thickness. Only the case of the
plates having all edges simply supported is considered. In general, it is also assumed that the
plates are subjected to transverse arbitrarily distributed continuous loads. The small
undamped vibrations of the system are analyzed.
Figure 1. The general model of an elastically connected rectangular double-plate complex system with arbitrary
boundary conditions.



FREE VIBRATIONS OF A DOUBLE-PLATE SYSTEM 597
The transverse vibrations of an elastically connected rectangular double-plate system are
governed by the following di!erential equations [7, 14], based on the classical
Kirchho!}Love plate theory:
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The boundary conditions for the simply supported plates are as follows:
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The initial conditions in general form may be written as

w
i
(x, y, 0)"w

i0
(x, y), wR

i
D
(x,y,0)

"l
i0

(x, y), i"1, 2. (3)

3. SOLUTION OF THE FREE VIBRATION PROBLEM

The free vibrations of plates are described by two homogeneous partial di!erential
equations (1) [7, 21}23]
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This equation system with the governing boundary conditions (2) can be solved by the
Navier method assuming the solutions in the form [7, 21}23]
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and=
mn

(x, y) are the known mode shapes of vibration for a simply supported single plate.
These functions also satisfy the di!erential equations (4) as the corresponding boundary
conditions (2).

Introducing the solutions (5) into equations (4) one obtains the expressions
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This gives a set of ordinary di!erential equations for the unknown time functions
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solutions of equations (7) are as follows:
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For this set of homogeneous equations to have a non-trivial solution, the determinant of the
coe$cients must vanish. This leads to the following frequency equation:
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This gives two in"nite sequences of the natural frequencies u
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Now the solutions (8) are written as follows:
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and then the time functions may be expressed in a more useful alternative form as
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It may be noted that the coe$cients a
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(16) are as follows:
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It is seen that the coe$cient a
1mn

, dependent on lower natural frequency u
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, is always
positive while a

2mn
, dependent on higher frequency u

2mn
, is always negative.

Finally, the free transverse vibrations of an elastically connected simply supported
double-plate complex system are described by the following formulae:
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Figure 2. The general mode shapes of vibration of an elastically connected rectangular simply supported
double-plate complex system corresponding to two sequences of the natural frequencies u

imn
, for i"1, 2; m"1;

n"1, 2, 3.
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(x, y) are the natural mode shapes of vibration of a plate
system corresponding to two sequences of the natural frequencies u
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(i"1, 2). The general

mode shapes are presented in Figures 2}4. It is seen that an elastically connected
double-plate complex system executes two types of vibrating motion: the synchronous
vibrations (i"1; a

1mn
'0) with lower frequencies u
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and the asynchronous vibrations
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(0) with higher frequencies u
2mn

. The mode shapes obtained for simply
supported plates are the same as those determined for a double-membrane system [7, 54, 57,
59, 60]. It should also be noted that the nature of the free vibrations for a simply supported
double-plate system is analogous to that for a double-membrane system. The mathematical
forms of the corresponding solutions are identical for both systems as a consequence of
governing the same boundary conditions.

In order to determine the unknown constants A
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, B
imn

existing in expressions (17)
and to "nd the "nal form of the free vibrations the initial-value problem must be
solved. These constants are calculated from the assumed initial conditions (3) using the
orthogonality condition of mode shape functions, which in this case has the classical



Figure 3. The general mode shapes of vibration of an elastically connected rectangular simply supported
double-plate complex system corresponding to two sequences of the natural frequencies u

imn
, for i"1, 2; m"2;

n"1, 2, 3.
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form [1]
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Figure 4. The general mode shapes of vibration of an elastically connected rectangular simply supported
double-plate complex system corresponding to two sequences of the natural frequencies u

imn
, for i"1, 2; m"3;

n"1, 2, 3.
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Multiplying these relations by the eigenfunction=
kl

then integrating them over the plate
surface and using the orthogonality condition (19) gives the equations, from which the
following formulae, (which make it possible to calculate the unknown constants) are
obtained [7, 23]:

A
1mn

"(u
1mn

z
1mn

)~1P
a

0
P

b

0

(a
2mn

v
10
!v

20
) sin(a

m
x) sin(b

n
y) dxdy,

A
2mn

"(u
2mn

z
2mn

)~1P
a

0
P

b

0

(a
1mn

v
10
!v

20
) sin(a

m
x) sin(b

n
y) dxdy,

(20)

B
1mn

"z~1
1mnP

a

0
P

b

0

(a
2mn

w
10
!w

20
) sin(a

m
x) sin(b

n
y) dxdy,

B
2mn

"z~1
2mnP

a

0
P

b

0

(a
1mn

w
10
!w

20
) sin(a

m
x) sin(b

n
y) dxdy,

where

z
2mn

"!z
1mn

"(a
1mn

!a
2mn

)c"0)25abu~2
10

(u2
2mn

!u2
1mn

).



FREE VIBRATIONS OF A DOUBLE-PLATE SYSTEM 603
4. NUMERICAL EXAMPLE

The simple case of a system of two physically and geometrically identical plates is
analyzed. The following values of the parameters are used in the numerical calculations:
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w
10

(x, y)"w
0
sin(a~1nx) sin(b~1ny), v

10
"0,

w
20

(x, y)"0)5w
0
sin(a~1nx) sin(2b~1ny), v

20
"0,

where w
0

is an arbitrary constant.
The general solutions of the free vibrations (17) have the form

w
2
(x, y, t)"

=
+

m,n/1

sin(a
m
x) sin(b

n
y)

2
+
i/1

[A
imn

sin(u
imn

t)#B
imn

cos(u
imn

t)],

w
2
(x, y, t)"

=
+

m,n/1

sin(a
m
x) sin(b

n
y)

2
+
i/1

[A
imn

sin(u
imn

t)#B
imn

cos(u
imn

t)] a
imn

,

where the natural frequencies and the mode shape coe$cients are evaluated from
expressions (13) and (16) as
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The results of the calculations of the natural frequencies are presented in Table 1.
The exemplary mode shapes of vibration corresponding to the "rst four pairs of the

natural frequencies are shown in Figure 5. The natural mode shapes are described by the
relations
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Interesting and important conclusions can be drawn from the above expressions. The
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de#ection form of each plate surface is identical for any pair of the natural frequencies u
imn

(i"1, 2). The synchronous vibrations are performed by both plates with equal amplitudes
(a

1mn
"1), and as a consequence the elastic layer is not deformed on the transverse

direction. In this case, the double-plate system oscillates as a single plate with the same
natural frequencies u

1mn
. The asynchronous vibrations are also performed with equal

amplitudes (a
2mn

"!1), and the natural frequencies u
2mn

are identical to those for a single
plate vibrating on an elastic foundation of sti!ness modulus 2k.

Solving the initial-value problem the free vibrations of identical plates have the following
"nal form:
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The assumed initial conditions generate the vibrations of the system with the "rst two
pairs of the natural frequencies, i.e., u
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the asynchronous vibrations with higher frequencies u

211
"72)0(s~1) and u

212
"97)7(s~1)

(see Figure 5).

5. CONCLUSIONS

The free transverse vibration theory of an elastically connected simply supported
double-plate complex system is developed. The solutions of the di!erential equations of
motion are formulated by the classical Navier method. The natural frequencies of the
system in the form of two in"nite sequences u

1mn
, u

2mn
(u

1mn
(u

2mn
) are determined and

the corresponding mode shapes of vibrations are shown. The free vibrations of
a double-plate are realized by two kinds of motions: the synchronous vibrations (a

1mn
'0)

with lower frequencies u
1mn

and the asynchronous vibrations (a
2mn

(0) with higher
frequencies u

2mn
. The initial-value problem is considered to "nd the "nal form of the free

vibrations. It can be noted that the nature of the free vibrations for a simply supported
double-plate system and for a double-membrane system [7, 54, 57, 59, 60] is similar. It can



Figure 5. The mode shapes of vibration of a system of two elastically connected rectangular simply supported
identical plates corresponding to the "rst four pairs of the natural frequencies.

FREE VIBRATIONS OF A DOUBLE-PLATE SYSTEM 605
be also shown that the corresponding two-degree-of-freedom complex discrete system
described in reference [63] is an analogue of an elastically connected double-body complex
continuous system represented, for example, by a double-string system [62, 63], double-beam
system [64], double-membrane system [60], and the double-plate system presented here.
A plate supported on an elastic foundation is a particular case of the double-plate system
considered. The solution procedure applied in this paper can be used in the investigation of
a general elastically connected multi-plate complex system [7, 20, 49, 50].

REFERENCES

1. S. KALISKI 1966 <ibrations and=aves in Solids. Warsaw: IPPT PAN (in Polish).
2. A. W. LEISSA 1969 NASA SP-160. Vibration of plates.
3. A. W. LEISSA 1973 Journal of Sound and <ibration 31, 257}293. The free vibration of rectangular

plates.



606 Z. ONISZCZUK
4. W. NOWACKI 1972 Dynamics of Structures. Warsaw: Arkady (in Polish).
5. R. R. CRAIG JR 1981 Structural Dynamics. New York: John Wiley.
6. G. JEMIELITA 1991 Scienti,c =orks of =arsaw ;niversity of ¹echnology, Civil Engineering 117,

1}220. On the winding paths of the theory of plates (in Polish).
7. Z. ONISZCZUK 1997 <ibration Analysis of the Compound Continuous Systems with Elastic

Constraints. RzeszoH w: Publishing House of RzeszoH w University of Technology (in Polish).
8. D. J. GORMAN 1979 Journal of Sound and<ibration 68, 239}246. Solutions of the LeH vy type for the

free vibration analysis of diagonally supported rectangular plates.
9. M. LEVINSON and D. W. COOKE 1983 International Journal of Mechanical Sciences 25, 207}215.

Thick rectangular plates*II. The generalized LeH vy solution.
10. M. LEVINSON and D. W. COOKE 1983 International Journal of Mechanical Sciences 25, 199}205.

Thick rectangular plates*I. The generalized Navier solution.
11. J. N. REDDY and A. A. KHDEIR 1989 American Institute of Aeronautics and Astronautics Journal 6,

1861}1866. Buckling and vibration of laminated composite plates using various plate theories.
12. A. V. BAPAT and S. SURYANARAYAN 1989 Journal of Sound and <ibration 132, 491}509. Free

vibrations of periodically point-supported rectangular plates.
13. W. C. CHEN and W. H. LIU 1990 International Journal of Mechanical Sciences 32, 779}793.

De#ections and free vibrations of laminated plates, LeH vy-type solutions.
14. G. JAYARAMAN, P. CHEN and V. W. SNYDER 1990 Computers and Structures 34, 203}214. Free

vibrations of rectangular orthotropic plates with a pair of parallel edges simply supported.
15. I. E. HARIK, X. LIU and N. BALAKRISHNAN 1992 Journal of Sound and <ibration 153, 51}62.

Analytic solution to free vibration of rectangular plates.
16. S. Y. LEE and S. M. LIN 1992 Journal of Sound and <ibration 158, 121}131. Free vibrations of

elastically restrained non-uniform plates.
17. L. A. BERGMAN, J. K. HALL, G. G. G. LUESCHEN and D. M. MCFARLAND 1993 Journal of Sound

and <ibration 162, 281}310. Dynamic Green's functions for LeH vy plates.
18. S. Y. LEE and S. M. LIN 1993 Computers and Structures 49, 931}939. LeH vy-type solution for the

analysis of nonuniform plates.
19. U. LEE and J. LEE 1999 Journal of Engineering Mechanics 125, 243}247. Spectral-element method

for LeH vy-type plates subject to dynamic loads.
20. V. X. KUNUKKASSERIL and S. RADHAKRISHNAN 1970 Proceedings of the Conference of the Indian

Society for ¹heoretical and Applied Mechanics, 441}458. Free vibrations of elastically connected
multi-plate systems.

21. Z. ONISZCZUK 1992 Proceedings of the X<th Symposium &&<ibration in Physical Systems11, PoznanH ,
126. Free vibrations of elastically connected rectangular double-plate system.

22. Z. ONISZCZUK 1996 Proceedings of the IXth Symposium on Dynamics of Structures,
RzeszoH w-Jawor 96. Scienti,c =orks of RzeszoH w ;niversity of ¹echnology, Mechanics 151, II,
117}124. Vibrations of elastically connected rectangular double-plate system (in Polish).

23. Z. ONISZCZUK 1998 Scienti,c=orks of=arsaw ;niversity of ¹echnology. Civil Engineering 132,
83}109. Free vibrations of elastically connected rectangular double-plate complex system (in
Polish).

24. S. KUKLA 1996 Zeitschrift fuK r Angewandte Mathematik und Mechanik 76, 279}280. Application of
Green's functions in free vibration analysis of plate systems.

25. S. KUKLA 1998 Journal of Sound and <ibration 217, 1}13. Application of Green's function in free
vibration analysis of a system of line connected rectangular plates.

26. S. KUKLA 1998 Proceedings of the X<IIIth Symposium 00<ibrations in Physical Systems11.
PoznanH -B!azR ejewko, 173}174. Free vibration analysis of a system of elastically connected
plates.

27. S. KUKLA 1998 Proceedings of the XXX<IIth Symposium 00Modelling in Mechanics11, Gliwice,
Scienti,c=orks of Applied Mechanics Department of Silesian;niversity of ¹echnology 7, 189}194.
Free vibration problem of a system of elastically connected rectangular plates (in
Polish).

28. S. KUKLA 1999 Journal of Sound and <ibration 225, 29}39. Free vibration of a system of two
elastically connected rectangular plates.

29. S. KUKLA 1999 Dynamic Green1s Functions in Free <ibration Analysis of Continuous and
Discrete-Continuous Mechanical Systems. Cze,stochowa: Technical University of Cze

&

stochowa
Publishers (in Polish).

30. S. CHONAN 1979 Journal of Sound and<ibration 63, 452}454. Elastically connected Mindlin plates
subjected to a moving load.



FREE VIBRATIONS OF A DOUBLE-PLATE SYSTEM 607
31. S. CHONAN 1979 Ingenieur-Archiv 48, 143}154. Moving load on initially stressed thick plates
attached together by a #exible core.

32. W. SZCZESD NIAK 1996 Proceedings of the <th Polish}Russian Seminar &&¹heoretical Foundations of
Civil Engineering11, Moscow, 122}137. Vibrations of sandwich plate under moving loads (in
Polish).

33. W. SZCZESD NIAK 1998 Scienti,c=orks of=arsaw ;niversity of ¹echnology, Civil Engineering 132,
153}172. Vibration of elastic sandwich and elastically connected double-plate system under
moving loads (in Polish).

34. J. C. SNOWDON 1975 ¹ransactions of the American Society of Mechanical Engineers, Journal of
Engineering for Industry 97, 88}93. Platelike dynamic vibration absorbers.

35. T. AIDA, K. KAWAZOE and S. TODA 1995 ¹ransactions of the American Society of Mechanical
Engineers. Journal of <ibration and Acoustics 117, 332}338. Vibration control of plates by
plate-type dynamic vibration absorbers.

36. Y.-Y. YU 1960 Journal of the Aerospace Sciences 27, 272}282. Flexural vibrations of elastic
sandwich plates.

37. Y.-Y. YU 1960 Journal of the Aerospace Sciences 27, 894}900. Simpli"ed vibration analysis of
elastic sandwich plates.

38. L. L. DUROCHER and R. SOLECKI 1976 Journal of the Acoustical Society of America 60, 105}112.
Harmonic vibrations of isotropic, elastic, and elastic/viscoelastic three-layered plates.

39. Y. P. LU, J. W. KILLIAN and G. C. EVERSTINE 1979 Journal of Sound and <ibration 64, 63}71.
Vibrations of three layered damped sandwich plate composites.

40. G. G. G. LUESCHEN and L. A. BERGMAN 1996 Journal of Sound and <ibration 191, 613}627.
Green's function synthesis for sandwiched distributed parameter systems.

41. Y. FROSTIG and M. BARUCH 1996 Journal of Engineering Mechanics 122, 1069}1076. Localized
load e!ects in high-order bending of sandwich panels with #exible core.

42. V. X. KUNUKKASSERIL and A. S. J. SWAMIDAS 1973 Journal of Sound and <ibration 30, 99}108.
Normal modes of elastically connected circular plates.

43. V. X. KUNUKKASSERIL and A. S. J. SWAMIDAS 1974 International Journal of Solids and Structures
10, 603}619. Vibrations of continuous circular plates.

44. V. X. KUNUKKASSERIL and A. S. J. SWAMIDAS 1975 American Institute of Aeronautics and
Astronautics Journal 13, 1326}1332. Stability of continuous double-plate systems.

45. A. S. J. SWAMIDAS and V. X. KUNUKKASSERIL 1975 Journal of Sound and <ibration 39, 229}235.
Free vibration of elastically connected circular plate systems.

46. A. S. J. SWAMIDAS and V. X. KUNUKKASSERIL 1978 Journal of the Acoustical Society of America
63, 1832}1840. Vibration of circular double-plate systems.

47. S. VENKATESAN and V. X. KUNUKKASSERIL 1978 Journal of Sound and <ibration 60, 511}534.
Free vibration of layered circular plates.

48. V. X. KUNUKKASSERIL and S. VENKATESAN 1979 Journal of Sound and <ibration 64, 295}302.
Axisymmetric non-linear oscillations of isotropic layered circular plates.

49. S. CHONAN 1976 Journal of Sound and <ibration 49, 129}136. The free vibration of elastically
connected circular plate system with elastically restrained edges and radial tensions.

50. S. CHONAN 1979 Journal of Sound and <ibration 67, 487}500. Resonance frequencies and mode
shapes of elastically restrained, prestressed annular plates attached together by #exible cores.

51. M. I. MOGHILEVSKIY 1980 Stroitelnaya Mekhanika i Rastchet Sooruzheniy 6, 59}63. Forced
vibrations of elastically connected plate system (in Russian).

52. Z. ONISZCZUK 1993 Proceedings of the <IIIth Symposium on Dynamics of Structures,
RzeszoH w-Jawor 93, Scienti,c=orks of RzeszoH w;niversity of ¹echnology, Mechanics 117, 329}336.
Free vibrations of elastically connected circular double-plate system (in Polish).

53. Z. ONISZCZUK 1994 Scienti,c=orks of RzeszoH w ;niversity of ¹echnology, Mechanics 126, 73}87.
Vibrations of elastically connected circular double-plate system (in Polish).

54. Z. ONISZCZUK 1995 Proceedings of the 3rd ;krainian-Polish Seminar 00¹heoretical Foundations in
Civil Engineering11, Dnepropetrovsk,=arsaw, 263}274. Free vibrations of an elastically connected
rectangular double-membrane system (in Polish).

55. Z. ONISZCZUK 1996 Proceedings of the X<IIth Symposium 00<ibrations in Physical Systems11,
PoznanH -B!azR ejewko, 208}209. Free vibration of elastically connected circular double-membrane
system.

56. Z. ONISZCZUK 1998 Scienti,c=orks of=arsaw ;niversity of ¹echnology, Civil Engineering 132,
61}81. Vibrations of elastically connected circular double-membrane compound system (in
Polish).



608 Z. ONISZCZUK
57. Z. ONISZCZUK 1998 Proceedings of the X<IIIth Symposium 00<ibrations in Physical Systems11,
PoznanH -B!azR ejewko, 209}210. Transverse vibrations of elastically connected rectangular
double-membrane compound system.

58. Z. ONISZCZUK 1998 Proceedings of the 6th Polish-;krainian Seminar 00¹heoretical Foundations of
Civil Engineering11, Dnepropetrovsk, =arsaw, 257}266. Transverse vibrations of elastically
connected rectangular double-membrane system (in Polish).

59. Z. ONISZCZUK 1998 Proceedings of the <IIIth Polish Symposium 00¹he In-uence of <ibrations on
Environment'', KrakoH w-Janowice, 269}274. The dynamic vibration absorption in the compound
continuous system of two solids by elastic constraints (in Polish).

60. Z. ONISZCZUK 1999 Journal of Sound and <ibration 221, 235}250. Transverse vibrations of
elastically connected rectangular double-membrane compound system.

61. Z. ONISZCZUK 1999 Proceedings of the 4th International Scienti,c Colloquium CAx ¹echniques 199,
Bielefeld, 393}400. Forced vibration analysis of elastically connected rectangular double-
membrane complex system.

62. Z. ONISZCZUK 2000 Journal of Sound and <ibration 232, 355}366. Transverse vibrations of
elastically connected double-string complex system, Part I: free vibrations.

63. Z. ONISZCZUK 2000 Journal of Sound and <ibration 232, 367}386. Transverse vibrations of
elastically connected double-string complex system, Part II: forced vibrations.

64. Z. ONISZCZUK 2000 Journal of Sound and <ibration 232, 387}403. Free transverse vibrations of
elastically connected simply supported double-beam complex system.


	1. INTRODUCTION
	2. FORMULATION OF THE PROBLEM
	Figure 1

	3. SOLUTION OF THE FREE VIBRATION PROBLEM
	Figure 2
	Figure 3
	Figure 4

	4. NUMERICAL EXAMPLE
	TABLE 1

	5. CONCLUSIONS
	Figure 5

	REFERENCES

